Kvadreringsreglerna

Kvadreringsreglerna är regler som förklarar hur man utvecklar följande uttryck:

\( (a+b)^2 = a^2+2ab+b^2 = (b+a)^2 \\ (a-b)^2 = a^2-2ab+b^2 = (b-a)^2\)

 

Man bör lära sig reglerna utantill, det kommer att underlätta vidare studier i matematik. Bland annat behöver man kunna reglerna i vissa fall av division då polynom ingår samt för att utföra kvadratkomplettering.

 

Första kvadreringsregeln

\( (a+b)^2 = (a+b)(a+b) = a^2 + ab + ab + b^2 = a^2+2ab+b^2\)

Då alla tal är positiva är det lätt att förstå att \( (a+b)^2 = (a+b)^2\)

 

Geometriskt kan man tolka regeln:

Kvadreringsregeln

Arean som \( (a+b)^2\) uttrycker är summan av samtliga rektanglar och kvadrater ovan.

\(\underbrace{(a+b)^2}_{\mathrm{Hela\,kvadraten}} = \overbrace{a^2}^{\mathrm{Bl\unicode{0x00E5}}} + \underbrace{2ab}_{\mathrm{Tv\unicode{0x00E5}\,rosa}} + \overbrace{b^2}^{\mathrm{R\ddot{o}d}}\)

 

Andra kvadreringsregeln

\( (a-b)^2 = (a-b)(a-b) = a^2-ab-ab+(-b \cdot -b) = a^2-2ab+b^2,\)

eftersom \( -b \cdot -b = b^2\)

Även här så gäller det att \( (a-b)^2 = (b-a)^2\). Jag lämnar det som en övning till läsaren att visa.

Geometriskt kan man tolka regeln på följande sätt:

KvadreringsreglernaArean som \( (a-b)^2\) uttrycker är den orangea kvadraten.

 

Bilden nedan visar hur uttrycket \( a^2-2ab+b^2\) kan föreställas geometriskt. Vi subtraherar \( 2ab\) från summan av \( a^2\) och \( b^2\)

 

 

Exempel, övningar och lösningar

Utveckla

a) \( (y-2)^2\)
b) \( (6x+4)^2\)
c) \( (8u+2z)^2\)
d) \( (3-b)^2\)
e) \( (10x-4y)^2\)
f) \( (5z+3y)^2\)

 

Vi går igenom alla steg i de två första exemplen:

a) \( (y-2)^2 = y^2-2\cdot y \cdot 2 + 2^2 = y^2-4y+4\)
b) \( (6x+4)^2 = (6x)^2 + 2 \cdot 6x \cdot 4 + 4^2 = 36x^2+48x+16\)

De resterande fyra lämnas som övningar med gömda svar.

Utveckla

c)Svar
\( (8u+2z)^2\)
\( (8u+2z)^2 = 64u^2 + 32uz + 4z^2\)

d)Svar
\( (3-b)^2\)
\( (3-b)^2 = 9 - 6b + b^2\)

e)Svar
\( (10x-4y)^2\)
\( (10x-4y)^2 = 100x^2 - 80xy + 16y^2\)

f)Svar
\( (5z+3y)^2\)
\( (5z+3y)^2 = 25z^2 + 30zy + 9y^2\)

Artikeln skriven av Johan Asplund. Lämna feedback / ställ en fråga.
Publicerad 6 april 2009. Senast uppdaterad 22 januari 2015.

Comments are closed